
5
HSM Procedures

Introduction . 5-2

Initialization . 5-3
DriverInit . 5-3

Packet Reception . 5-10
Reception Methods . 5-10
DriverISR . 5-15
DriverPoll . 5-21

Packet Transmission . 5-22
Transmission Methods . 5-22
DriverSend . 5-24

Multi-Operating System Support . 5-25
DriverEnableInterrupt . 5-26
DriverDisableInterrupt . 5-26

Control Procedures . 5-27
DriverReset . 5-28
DriverShutdown . 5-29
DriverMulticastChange . 5-30
DriverPromiscuousChange . 5-32
DriverStatisticsChange . 5-34
DriverRxLookAheadChange . 5-35
DriverManagement . 5-36

Timeout Detection . 5-37
DriverTxTimeout (RX-Net) . 5-37
DriverAES / DriverCallBack . 5-38

Removal . 5-39
DriverRemove . 5-39

Version 1.00 5 – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

This chapter describes the routines that are the primary components of
the Hardware Specific Module (HSM).

Initialization and Removal
• DriverInit (required)

• DriverRemove (required)

Board Service
• DriverISR

(one required)
• DriverPoll

Packet Transmission
• DriverSend (required)

Multi-Operating System Support
• DriverEnableInterrupt (recommended)
• DriverDisableInterrupt (recommended)

Control Procedures
• DriverReset (required)

• DriverShutdown (required)
• DriverMulticastChange (recommended)

• DriverPromiscuousChange (recommended)
• DriverStatisticsChange (optional)

• DriverRxLookAheadChange (optional)

• DriverManagement (optional)

Timeout Detection
• DriverAESCallBack (optional)

• DriverINTCallBack (optional)

• DriverTxTimeout (RX-Net drivers only)

Every driver must provide the required procedures in order to function
properly. The recommended procedures should be implemented if the
hardware supports that function. The optional procedures are available
if the adapter or driver requires the functionality. The HSM indicates
routines not supported by placing a zero in the corresponding fields of
the DriverParameterBlock.

All procedures described on the following pages are near calls from the
MSM and TSM. The pseudocode shown is intended to illustrate a
general flow of events and does not necessarily describe optimized code.
Refer to Appendix I for a sample server driver template.

5 – 2 Version 1.00

Chapter 5 • HSM Procedures

Initialization

The HSM’s DriverInit routine controls the complete initialization
process, although specific tasks performed during initialization are
handled by MSM or TSM routines. The initialization tasks include:

• Allocate the Frame and Adapter Data Space
• Process custom command line keywords and custom firmware
• Parse the standard LOAD command line options
• Register hardware options
• Initialize the adapter hardware
• Register the driver with the Link Support Layer

This section explains how the initialization tasks are divided between
the HSM and the support modules. Following the discussion is
pseudocode for a DriverInit routine.

DriverInit

When the NetWare OS receives the command to load the driver, it calls
the DriverInit routine (specified as the "start" routine in HSM’s linker
definition file). DriverInit must preserve EBP, EBX, ESI, and EDI on
the stack, and set the DriverStackPointer field of the DriverParameter-
Block to the value of ESP. The HSM then registers with the MSM and
TSM interface as described in the next section.

Register with the MSM / TSM

DriverInit calls the <TSM>RegisterHSM routine with ESI pointing to
the DriverParameterBlock. The TSM passes the driver’s parameter
block pointer along with its own to the MSM.

The MSM makes a local copy of both parameter blocks and processes
the information passed on the stack from the operating system. If the
HSM has custom firmware, the MSM loads the firmware and initializes
the DriverFirmwareSize and DriverFirmwareBuffer variables as
described in Chapter 3.

The MSM allocates memory for the Frame Data Space and creates a
copy of the driver’s configuration table template in that area. If the
MLIDCardName and MLIDMajorVersion fields of the configuration
table are initialized to zero, the MSM fills in these fields and the
MLIDMinorVersion field using information derived from the linker
definition file. If the HSM has placed non-zero values in the card name
and major version fields, these fields are not modified.

Version 1.00 5 – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Finally, the MSM sets the MLIDMaximumSize field of the configuration
table to the LSL’s maximum packet size and returns to DriverInit.

• If the MSM was unsuccessful in its initialization tasks, it returns
with EAX pointing to an error message. DriverInit should print the
message using MSMPrintString and return to the operating system
with EAX set to a non-zero value.

• If the MSM is successful, it returns with EAX set to zero and EBX
pointing to the driver’s configuration table in the Frame Data Space.
The HSM must now gather the hardware option information needed
for the configuration table and call the MSM to parse the driver
parameters entered on the command line. This process is described
in the following section.

Determine Hardware Options

After <TSM>RegisterHSM returns successfully, the driver must
determine the hardware configuration of the adapter. This includes
parameters such as the slot number for MCA or EISA adapters, the
base port for programmed IO adapters, memory decode addresses for
shared RAM adapters, interrupt numbers, and DMA channels. In MCA
or EISA machines, the driver can obtain this information directly from
the system once the slot number has been identified.

DriverInit should perform each of the following steps if appropriate for
the hardware.

1) If the HSM supports both ISA and MCA buses, it should use the
MSMGetHardwareBusType macro to determine the bus type.

2) If the HSM supports an EISA or MCA bus, scan all slots to search
for the adapter’s ID. Any slots that are found should be recorded in
the IOSlot option list of the AdapterOptionDefinitionStructure. This
structure is described in Chapter 7 under the MSMParseDriver-

Parameters routine.

3) The HSM next calls MSMParseDriverParameters to determine the
hardware configuration options (or slot number) specified on the
load command line and to query the operator for any required
parameters which were not specified.

The MSMParseDriverParameters procedure requires an Adapter-

OptionDefinitionStructure containing the valid options for the
hardware configuration. A NeedsBitMap is also required to indicate
which specific hardware options must be obtained either from the
command line or from the console operator.

5 – 4 Version 1.00

Chapter 5 • HSM Procedures

The table below shows the correspondence between the load options
and configuration table fields. The standard load command options
are described in Appendix A. An example load command is shown
here:

load <driver> frame=ethernet_802.3, port=300, int=3

Configuration Table Fields Command Line

MLIDSlot

MLIDIOPort0

MLIDIORange0

MLIDIOPort1

MLIDIORange1

MLIDMemoryDecode0

MLIDMemoryLength0

MLIDMemoryDecode1

MLIDMemoryLength1

MLIDInterrupt0

MLIDInterrupt1

MLIDDMAUsage0

MLIDDMAUsage1

MLIDChannelNumber

load <driver> SLOT=4

load <driver> PORT=300

load <driver> PORT=300:A

load <driver> PORT1=700

load <driver> PORT1=700:14

load <driver> MEM=C0000

load <driver> MEM=C0000:1000

load <driver> MEM1=CC000

load <driver> MEM1=CC000:2000

load <driver> INT=3

load <driver> INT1=5

load <driver> DMA=0

load <driver> DMA1=3

load <driver> CHANNEL=2

MSMParseDriverParameters also processes any custom command
line keywords defined by the DriverKeyword variables in the
DriverParameterBlock. (see also MSMParseCustomKeywords)

On return from MSMParseDriverParameters, the I/O portion of the
logical board’s configuration table in the Frame Data Space has
been filled in with the parsed values.

4) For EISA or MCA buses, the configuration table now contains the
selected adapter slot number. If the adapter is on an MCA bus, the
HSM should read the appropriate POS registers for the slot to
determine the configuration. For EISA adapters, the HSM should
call MSMReadEISAConfig to determine the configuration.

When all needed information has been obtained for the configuration
table, DriverInit calls MSMRegisterHardwareOptions which is described
in the next section.

Note: If the driver must access shared memory before registering the

hardware options, it must use MSMReadPhysicalMemory and
MSMWritePhysicalMemory.

Version 1.00 5 – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Register Hardware Options

The HSM calls MSMRegisterHardwareOptions to register with the
operating system. This routine reports to the HSM whether a new
adapter or a new frame format for an existing adapter is being loaded.
If a new adapter is being registered, the MSM allocates the Adapter
Data Space and copies the driver’s AdapterDataSpaceTemplate to that
area. This routine also notifies the HSM of any conflicts with existing
hardware in the system.

There are four possible conditions that the HSM must handle on return
from MSMRegisterHardwareOptions:

• If EAX = 0, a new adapter was successfully registered and the
HSM must proceed with the hardware initialization (EBP now
contains a pointer to the Adapter Data Space).

• If EAX = 1, a new frame type for an existing adapter was
successfully registered and initialization is essentially complete.

• If EAX = 2, a new channel for an existing multichannel adapter
was successfully registered. The driver (and MSM) typically
treat the registering of a new channel as a new adapter.

• If EAX > 2, the MSM was unable to register the hardware
options and EAX points to an error message. DriverInit must
print the error message using MSMPrintString and return to
the operating system with EAX set to a non-zero value.

Setup a Board Service Routine

The HSM registers its board service routine, DriverISR or DriverPoll,
by calling either MSMSetHardwareInterrupt or MSMEnablePolling.
The DriverISR description later in this chapter provides special
instructions on setting up and handling shared interrupts.

Initialize the Adapter

At this point the HSM initializes the adapter hardware. This consists
of all setup appropriate for the hardware and might also include RAM
and other hardware tests. The DriverReset routine could be called to
handle part of this procedure.

Note: It is important that DriverInit sets up the correct number of transmit
buffers (the maximum number of simultaneous sends allowed by the
hardware) by placing an appropriate value in MSMTxFreeCount.
A description of this variable is in Chapter 4 and information about its
use is in the packet transmission section of this chapter.

5 – 6 Version 1.00

Chapter 5 • HSM Procedures

If an error occurs during the hardware initialization, DriverInit should
print an appropriate error message, call MSMReturnDriverResources,
and return to the operating system with EAX set to a non-zero value.
If the hardware initializes successfully, the HSM then registers the
driver with the LSL.

Register with the LSL

DriverInit calls the MSMRegisterMLID routine to register the driver
with the Link Support Layer. Registration consists of the MSM passing
the addresses of the MSM’s send and control handler procedures, and
a pointer to the HSM’s configuration table to the LSL. The LSL assigns
a logical board number to the adapter and the MSM places it in the
configuration table. The MSM automatically registers a logical board
with the LSL during MSMRegisterHardwareOptions each time a new
frame is added for an existing adapter. If an error occurs, the MSM
routine returns a pointer to an error message in EAX.

If MSMRegisterMLID is successful, the configuration table contains a
valid board number. HSMs for intelligent bus master adapters may
now pass the board number and frame ID information to the adapter
if necessary.

Schedule Timeout Callbacks

If the HSM is running an interrupt driven adapter, it may need to
schedule a timer event that checks to see if the board was unable to
complete a send. To establish this timer event, the driver uses either
MSMScheduleIntTimeCallBack or MSMScheduleAESCallBack. These
routines schedule periodic calls to the HSM’s DriverCallBack or
DriverAES routines. (RX-Net drivers normally use DriverTxTimeout,
but could use these other two routines.)

If the adapter is not interrupt driven, the polling procedure can check
to see if it failed to complete a send.

Version 1.00 5 – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverInit Pseudocode

On Entry Interrupts are enabled

Note this routine executes at a process level

On Return EAX zero if successful; non-zero if an error occurred

Interrupts may be in any state

DriverInit proc

push ebx, ebp, esi, edi

mov DriverStackPointer, esp

lea esi, DriverParameterBlock

call <TSM>RegisterHSM

jnz DriverInitError

*** Determine Hardware Options ***

If using an MCA or EISA Adapter

Search all slots for the Adapter’s ID

Build an IOSlot list for the AdapterOptionStructure

call MSMParseDriverParameters

jnz DriverInitError

If using an MCA or EISA Adapter

Use MLIDSlot value to obtain configuration information...

If MCA: ...from POS registers

If EISA: ...from configuration block using MSMReadEISAConfig

*** Register Hardware Options ***

call MSMRegisterHardwareOptions

If an Error occurred

jmp DriverInitError

else if a New Frame was added

jmp DriverInitExit

else a New Adapter was registered

continue with full initialization

*** Setup a Board Service Routine ***

call MSMSetHardwareInterrupt (or MSMEnablePolling)

jnz DriverInitError

-(continued)-

5 – 8 Version 1.00

Chapter 5 • HSM Procedures

*** Initialize the Adapter ***

If there is not a Node Address override

Read in the Node Address from the board

Copy the Node Address to the Configuration Table

Initialize MSMTxFreeCount

Initialize the Adapter Hardware, etc...

call DriverReset to handle some tasks

If there was an error initializing the hardware

call MSMReturnDriverResources

jmp DriverInitError

*** Register with the LSL ***

call MSMRegisterMLID

jnz DriverInitError

*** Schedule Timeout Callbacks ***

If Timeout detection is required

eax = callback interval in ticks

call MSMScheduleIntTimeCallBack (to enable callbacks to DriverCallBack)

- or -

call MSMScheduleAESCallBack (to enable callbacks to DriverAES)

jnz DriverInitError

DriverInitExit:

eax = zero (Initialization was successful)

pop edi, esi, ebp, ebx

return

DriverInitError:

esi = eax (Ptr to Error Message)

call MSMPrintString

eax = non-zero value (Initialization Failed)

pop edi, esi, ebp, ebx

return

DriverInit endp

Version 1.00 5 – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Packet Reception

This section provides a brief overview of the commonly used reception
methods available to the developer.

When the adapter receives a packet, the HSM must copy the packet
into an RCB obtained from the TSM. The RCB is passed back to the
TSM where it is processed and transferred to the Link Support Layer.
The Link Support Layer then directs it to the proper protocol stack.

Reception Methods

The method of packet reception selected is typically dependent on the
adapter’s data transfer method. The examples on the following pages
are intended to illustrate a general flow of events. Refer to the
appropriate MSM and TSM support call descriptions for detailed
information.

In general, packet reception involves the following steps:

• Obtain a Receive Control Block (RCB) structure from the TSM.
RCBs may be allocated before or after a packet is received.

• Copy the packet into the RCBDataBuffer or RCBDataFragments.

• Return the RCB back to the TSM (RCBs will be placed in the LSL’s
holding queue until the HSM issues a service events command).

• Use the MSMServiceEvents macro to allow the LSL to call the
transmit ECB’s event service routine.

5 – 10 Version 1.00

Chapter 5 • HSM Procedures

Programmed I/O and Shared RAM

Option 1. This is the simplest reception method. During development

it may be helpful to initially use this method, then implement Option 2
after the HSM is functioning properly. The steps performed for this
reception method are outlined below. The <TSM>ProcessGetRCB

procedure in Chapter 6 provides a detailed description of this process.

DriverISR

Call MSMAllocateRCB to get an RCB (unless you already have one from last step)

Copy the received packet into the RCBDataBuffer.

Call <TSM>ProcessGetRCB

The TSM checks the header information and if valid:

• fills in the remainder of the RCB fields

• delivers the RCB to the LSL

• returns a new RCB to the driver

Save the new RCB for next packet received

MSMServiceEvents

Option 2. This method involves using a LookAhead process, in which
the frame header information is first confirmed before the entire packet
is transferred from the adapter into an RCB. For this reason, Option 2
is recommended over Option 1.

The adapter’s data transfer mode determines how the LookAhead
process is handled. Programmed I/O adapters must transfer MSMMax-

FrameHeaderSize bytes into a LookAhead buffer allocated for this
purpose. If the adapter uses a shared RAM transfer mode, the
LookAhead buffer is simply the start of the packet in shared RAM.

The steps performed for this reception method are outlined below. The
<TSM>GetRCB procedure in Chapter 6 provides a detailed description
of this process.

DriverISR

Setup a LookAhead buffer as described above (MSMMaxFrameHeaderSize bytes)

Call <TSM>GetRCB (with a pointer to the LookAhead buffer in ESI)

TSM checks the header information and if valid:

• obtains an RCB

• fills in the RCBReserved fields

• returns a pointer to the RCB in ESI

Copy the remainder of the packet into the RCB fragments

Call <TSM>RcvComplete

MSMServiceEvents

Version 1.00 5 – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DMA and Bus Master

Option 1. This reception method is used for most bus master adapters

in which the RCBs are preallocated. The steps performed for this
reception method are outlined below. The <TSM>ProcessGetRCB
procedure in Chapter 6 provides a detailed description of this process.

DriverInit

Use MSMAllocateRCB to obtain first RCB(s)

Queue RCB(s) until a packet is received in DriverISR.

DriverISR

Copy received packet into the RCBDataBuffer.

Call <TSM>ProcessGetRCB

The TSM checks the header information and if valid:

• fills in the remainder of the RCB fields

• delivers the RCB to the LSL

• returns a new RCB to the driver

Queue the new RCB until next packet is received

MSMServiceEvents

Option 2. This method is recommended for intelligent adapters that
are designed to be "ECB aware". It reduces the load on the server by
off-loading code to the adapter. In this way, the adapter’s firmware
handles most of the reception process. The steps performed for this
reception method are outlined below.

DriverInit

Use MSMAllocateRCB to obtain first RCB(s)

Queue RCB(s) until a packet is received.

Firmware

Filters the frame header information and if valid, fills in all

fields of the ECB as described in Chapter 4. Generates interrupt

when receive is complete (ready).

DriverISR

Call <TSM>RcvComplete to return the completed RCB.

Use MSMAllocateRCB to obtain another RCB for queue

MSMServiceEvents

5 – 12 Version 1.00

Chapter 5 • HSM Procedures

RX-Net

Option 1. This option is used for RX-Net shared RAM adapters. The

steps performed for this reception method are outlined below. The
RXNetTSMRcvEvent procedure in Chapter 6 provides a detailed
description of this process.

DriverISR

Set ESI to point to received packet.

Call RXNetTSMRcvEvent

The TSM copies the entire packet into an RCB if the fragment

is wanted with no other interaction from the driver.

MSMServiceEvents

Option 2. This option is used for RX-Net programmed I/O adapters.

The steps performed for this reception method are outlined below. The
RXNetTSMGetRCB procedure in Chapter 6 provides a detailed
description of this process.

DriverISR

Set ESI to point to a LookAhead buffer containing the

header information as shown in Figure 5.1.

Call RXNetTSMGetRCB

The TSM checks the packet header information to see if the packet fragment

is wanted and if so, returns a pointer to an RCB.

Determine the current position in the RCB fragment buffers and copies

the data into the RCB.

Update the packet length field of the RCB.

Call RXNetTSMRcvComplete

MSMServiceEvents

Version 1.00 5 – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Short

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

Long

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

LongFlag

Exception

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

LongFlag

Pad 1: ProtocolType

Pad 4 : FFh

Pad 2 : SplitFlag

Pad 3 : FFh

Figure 5.1 Format of RX-Net LookAhead Buffer

5 – 14 Version 1.00

Chapter 5 • HSM Procedures

Board Service

The board service routine generally needs to detect and handle both
receive events and transmit complete events. The driver can be notified
of these events by using either an interrupt service routine, DriverISR,

a polling procedure, DriverPoll, or a combination of both. These
routines are explained next.

DriverISR

DriverISR is called by the MSM when a hardware interrupt is detected.
The driver needs only to service the adapter and return (do not use
iret).

Note: Novell recommends that interrupts remain unaltered during DriverISR.

Drivers should allow the support modules to control the interrupt state
via calls to the DriverEnableInterrupt and DriverDisableInterrupt

routines at the appropriate times. If a driver procedure must alter the
interrupt state, it must restore the interrupt state before returning.

The interrupt service routine generally needs to detect and handle the
following events:

• Receive Event
• Receive Error
• Transmit Complete
• Transmit Error

The ISR routine should continue checking for receive and transmit
events until there are no more to be serviced.

Error detection and handling are optional in the cases where the
hardware is able to handle transmit and receive errors without driver
intervention. Even if the hardware has this capability, the driver must
still be able to update or maintain the statistics table described in
Chapter 3.

Receive Event

The receive portion of the board service routine checks for receive errors
and jumps to an error handler if an error has occurred. Otherwise, the
routine services the packet using one of the reception methods described
in the previous section.

Version 1.00 5 – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Receive Error

If the HSM encounters a receive error, it should perform the following
actions:

• Attempt to identify the error. While some cards provide greater

diagnostic support than others, the HSM should attempt to pinpoint
the specific cause of the error (buffer overflow, missed packet,
checksum error, etc.).

• Increment diagnostic counters. The HSM should maintain the

diagnostic counters in the statistics table for every detectable error
condition. This will aid in debugging the driver as well as
maintaining it in the future. The driver should also increment the
generic statistic TotalRxMiscCount if a fatal receive error occurred
that is not counted in any other standard counter. Fatal receive
errors may also be counted by the TSM using a media specific
counter as well.

Transmit Complete

Each time the HSM detects a successfully completed transmit event, it
should perform the following functions:

• Release the TCB using (if not already released in DriverSend)

call <TSM>SendComplete

• Increment the number of available transmit resources

inc [ebp].MSMTxFreeCount

• Transmit the next packet if one is waiting to be sent

test [ebp].MSMStatusFlags,TXQUEUED
jz NoSendsQueued
call <TSM>GetNextSend
jnz NoSendsQueued
call DriverSend

Transmit Errors

If the HSM encounters a transmit error, it should perform the following
actions:

• Attempt to identify the error. As with receive errors, the HSM

should try to pinpoint the specific cause of the error (excess
collisions, cable disconnect, FIFO underrun, etc.).

5 – 16 Version 1.00

Chapter 5 • HSM Procedures

• Increment diagnostic counters. The HSM should maintain the
diagnostic counters in the statistics table for every detectable error
condition. The HSM should also increment the generic statistic
TotalTxMiscCount if a fatal transmit error occurred that is not
counted in any other standard counter. The fatal transmit error
may be counted by the TSM using a media specific counter as well.

• Attempt to send the packet again. In the event the HSM has

reached the maximum retry limit for sending a packet, discard the
packet, increment MSMTxFreeCount, and transmit the next packet
if one is waiting to be sent.

Using Shared Interrupts

An HSM can support shared interrupts provided that they are also
supported by the host bus and the adapters which will share the
interrupt. Interrupts can be shared if the bus is operating in level-
triggered mode or external logic exists on the adapters sharing the
interrupt.

• The MCA bus always uses level-triggered interrupts and can
support shared interrupts.

• The PC/AT bus normally uses edge-triggered interrupts and will not
support shared interrupts unless external logic exists on the
adapters sharing the interrupt.

• The EISA bus normally uses edge-triggered interrupts, but each
interrupt can be individually set to level-triggered mode in order to
support shared interrupts.

A DriverISR routine which supports shared interrupts is very similar
to one which does not. If the HSM supports shared interrupts, the ISR
must perform the following operations:

• Immediately determine if the interrupt request is from its adapter.
If not, return at once to the operating system ISR with EAX equal
to a non-zero value and the zero flag cleared.

or al,01h ; clear the zero flag
ret ; return to operating system ISR code

• If the interrupt request is from the HSM’s adapter, the interrupt
service routine should proceed. Upon completion, the ISR should
return with EAX equal to zero and with the zero flag set.

xor eax,eax ; zero eax & set the zero flag
ret ; returns to operating system ISR code

Version 1.00 5 – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

The HSM must indicate that the adapters are sharing interrupts by
setting bit 5 in the MLIDSharingFlags field of the configuration table.
The HSM must also initialize the DriverParameterBlock variable,
DriverEndOfChainFlag, as described in the following table.

If the HSM: The HSM must: DriverEndofChainFlag value:

Supports shared

interrupts

Set the IOSharingInterrupt0Bit

(bit 5) in the MLIDSharingFlags

field of the HSM’s configuration

table.

Zero The shared interrupt vector is placed

first on the shared interrupt chain.

If another interrupt vector is requested

after the original vector is placed at

the head of the chain, the latter vector

will be serviced first.)

Non-zero The shared interrupt vector is placed

at the end of the shared interrupt

chain by the operating system.

Does not support

shared interrupts

Clear the IOSharingInterrupt0Bit

(bit 5) in the MLIDSharingFlags

field of the HSM’s configuration

table.

Not used.

5 – 18 Version 1.00

Chapter 5 • HSM Procedures

DriverISR Pseudocode

On Entry EBP Pointer to the Adapter Data Space

Dir Flag is cleared

Interrupts are disabled (Novell recommends interrupts remain disabled

during the DriverISR)

On Return Dir Flag must be cleared

Interrupts must be disabled

Note no registers are preserved

DriverISR proc

The interrupt controller is normally serviced here. However, if we implement the

DriverEnableInterrupt and DriverDisableInterrupt routines as recommended,

the MSM and TSM will call these routines at the appropriate time.

;;; MSMDisableHardwareInterrupt ; Do NOT use for Multi-OS support

; (see DriverEnableInterrupt)

;;; MSMDoEndOfInterrupt ; Do NOT use for Multi-OS support

CheckStatus:

Get the controller’s interrupt status

ReceiveEvent:
.
.
.

(check for receive errors and handle)

.

.

.

*** Setup a LookAhead Buffer ***

mov ecx, [ebp].MSMMaxFrameHeaderSize

lea edi, [ebp].LookAheadBuffer

rep insb

Version 1.00 5 – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

*** Obtain an RCB for the Received Packet ***

lea esi, [ebp].LookAheadBuffer

mov ecx, HardwareReportedPacketSize

call <TSM>GetRCB

if RCB is NOT available

skip this packet

jmp CheckStatus

*** Copy data and deliver RCB ***

copy the packet data into the RCB fragment buffers

call <TSM>RcvComplete

jmp CheckStatus

TransmitEvent:
.
.
.

(check for transmit errors and handle/retry)

.

.

.

TransmitComplete:

reset retry counter to Maximum value

mov [ebp].TxInProgress, FALSE

inc [ebp].MSMTxFreeCount

*** Transmit Next Packet In the Send Queue ***

test [ebp].MSMStatusFlags,TXQUEUED

jz Exit

call <TSM>GetNextSend

jnz Exit

call DriverSend

Exit:

;;; MSMEnableHardwareInterrupt ; Do NOT use for Multi-OS support

; (see DriverEnableInterrupt)

MSMServiceEventsAndRet

DriverISR endp

5 – 20 Version 1.00

Chapter 5 • HSM Procedures

DriverPoll

The DriverPoll procedure is used if the HSM requires a poll-driven
board service routine. This routine will typically perform functions
similar to those of the DriverISR procedure.

Note: DriverPoll is normally not used by an interrupt-driven HSM, however,

there may be some cases where polling is required or where polling is
used in addition to the ISR.

To register the polling procedure, place a pointer to the procedure in the
DriverPollPtr field of the DriverParameterBlock. The driver can then
enable polling during initialization by calling MSMEnablePolling.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are disabled

On Return EBP must be preserved

Version 1.00 5 – 21

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Packet Transmission

This section provides a brief overview of the methods commonly used
for packet transmission.

When sending a packet, a protocol stack assembles a list of fragment
pointers in a transmit ECB and passes it to the LSL. The ECB is then
transferred to the TSM where the information is processed and a TCB
is constructed. The TCB structure consists of the assembled packet
header and data fragment information. The TSM directs the TCB to
the DriverSend routine which collects the header and packet fragments
and transmits the packet.

Transmission Methods

The method of packet transmission selected is typically dependent on
the adapter’s data transfer method. The examples on the following
pages are intended to illustrate a general flow of events. Refer to the
appropriate MSM and TSM support call descriptions for detailed
information.

In general, packet transmission involves the following steps:

• During DriverInit, initialize MSMTxFreeCount to the number of
adapter transmit resources available.

• The TSM builds a TCB, checks to see if the driver can handle
another transmit and if so, decrements MSMTxFreeCount and calls
DriverSend (otherwise the TSM queues the packet).

• DriverSend will typically copy the media header and data fragments
to the transmit buffer and start the transmission.

• The driver returns the TCB back to the TSM using <TSM>Send-
Complete. This can be performed before the actual transmission is
complete as long as all information has been collected from the TCB
and the TCB is no longer needed (a "lying" send). The underlying
transmit ECB will be placed in the LSL’s holding queue until the
HSM issues a service events command.

• Use the MSMServiceEvents macro to allow the LSL to call the
transmit ECB’s event service routine.

• When the actual transmission is complete, increment MSMTxFree-
Count. This is typically performed during DriverISR after a
transmit complete interrupt.

5 – 22 Version 1.00

Chapter 5 • HSM Procedures

Programmed I/O, Shared RAM, and Host DMA

The sequence of events for transmitting a packet using programmed
I/O, shared RAM, or host DMA adapters is described below.

HSM 1. Sets MSMTxFreeCount to the maximum number of packets that the

adapter can buffer. (performed in DriverInit)

TSM 2. If the Ethernet TSM is used, ECX is set to the padded length of the packet.

(This is the value that the adapter will send onto the wire, regardless of

the value in the TCBDataLen field. In fact, the value in ECX is not equal

to TCBDataLen if the packet is Ethernet 802.3 or Ethernet II and was

evenized or if the packet was padded to 60 bytes.)

3. Decrements MSMTxFreeCount and calls DriverSend with ESI pointing to

a filled in TCB structure.

HSM 4. Calls <TSM>SendComplete or <TSM>FastSendComplete either after

the packet has been buffered onto the adapter or after the transmission

has been completed.

5. Increments MSMTxFreeCount after the adapter completes the

transmission (typically performed in DriverISR).

Bus Master

Option 1. This option is identical to the method described on the

previous page for programmed I/O, shared RAM, and host DMA
adapters.

Option 2. This method is recommended if the adapter is ECB aware

and has sufficient adapter processor speed. It dramatically decreases
the load on the server by reducing the host’s process time.

HSM 1. Sets DriverSendWantsECBs to a non-zero value and sets

MSMTxFreeCount to the number of packets that the adapter can

process at one time. (performed in DriverInit)

TSM 2. Decrements MSMTxFreeCount and calls DriverSend with a pointer to

the Frame Data Space in EBX and a pointer to the ECB in ESI.

HSM 3. Calls either <TSM>SendComplete or <TSM>FastSendComplete after

the packet has been buffered onto the adapter or after the transmission

has been completed.

4. Increments MSMTxFreeCount after the adapter completes the

transmission (typically performed in DriverISR).

Version 1.00 5 – 23

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverSend

The TSM calls DriverSend to transmit a frame onto the medium.
DriverSend is provided a pointer to a Transmit Control Block (TCB).
Refer to Chapter 3 for information on TCBs.

The HSM can assume that the TCB is valid for its LAN medium; it
should not do consistency checking on the TCB fields. The HSM should
also assume that it has the resources necessary to handle the transmit
operation; it does not need to check to see if it has a transmit hardware
resource available. The TSM performs flow control for the HSM. The
TSM determines if the HSM can handle the packet by checking the
value of MSMTxFreeCount.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ESI Pointer to a Transmit Control Block (TCB) **

ECX Padded length of the packet (Ethernet only)

Interrupts are disabled. Novell recommends that system interrupts

remain disabled during DriverSend.

On Return Interrupts must be disabled

**Note: The DriverSend routine may request ECBs instead of TCBs by
initializing the DriverParameterBlock variable DriverSendWantsECBs

to a non-zero value (see Chapter 3). If DriverSend uses ECBs for
packet transmission, it is responsible for building the proper media
header (refer to Chapter 4 for additional information on ECB aware
adapters). If the HSM uses ECBs instead of TCBs, it must not modify
the transmit ECB’s BLink field.

Pseudocode

Copy the MediaHeader from the TCB into a transmit buffer.

Copy the fragmented data from the TCB’s fragment structure into a transmit buffer.

Give the command to send the packet.

Restore ESI to point to the beginning of the TCB

IF called from DriverISR

Call <TSM>SendComplete ("lying" send)

ELSE
Call <TSM>FastSendComplete

ENDIF

Return

5 – 24 Version 1.00

Chapter 5 • HSM Procedures

Multi-Operating System Support

Novell has been working towards a driver specification that allows v4.x
HSMs to be transported to other 32-bit Intel-based operating system
platforms without any code modification. In order to accomplish this
task, two new driver routines have been added.

If you can control interrupts at the adapter, you should implement the
DriverEnableInterrupt and DriverDisableInterrupt routines. Drivers
that control interrupts at the adapter can be transported to other OS
platforms where access to the PIC is restricted.

Previously drivers routines used the MSMEnableHardwareInterrupt

and MSMDisableHardwareInterrupt macros to control the
Programmable Interrupt Controller (PIC). You should only use these
macros if interrupts can not be enabled and disabled at the adapter
hardware level.

Note: In addition, if the HSM provides these two new calls, it must not use

the MSMDoEndOfInterrupt macro or directly EOI the PIC. The MSM
and TSM will perform all necessary operations at the appropriate time
depending on the platform that the driver is running under.

The new specification also recommends avoiding the use of the CLI and
STI instruction in HSM code.

Drivers should allow the MSM and TSM to control the interrupt state
via calls to the DriverEnableInterrupt and DriverDisableInterrupt

routines at the appropriate times. Novell recommends that the
interrupt states remain unaltered during driver procedures. If a driver
procedure must alter the interrupt state, it must restore it to the
original state before returning.

Version 1.00 5 – 25

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverEnableInterrupt

This procedure enables interrupts at the adapter hardware.

On Entry EBP Pointer to the Adapter Data Space

On Return EBP must be preserved

DriverEnableInterrupt proc

Enable the adapter to generate interrupts

ret

DriverEnableInterrupt endp

DriverDisableInterrupt

This procedure disables interrupts at the adapter hardware.

On Entry EBP Pointer to the Adapter Data Space

On Return EAX If Interrupts are Non-Shareable

EAX is zero

If Interrupts are Shareable

EAX is zero if the interrupt was generated by our board.

EAX is non-zero if the interrupt was not ours. In this case, the

TSM calls DriverEnableInterrupt on return from this routine.

EBP must be preserved

DriverDisableInterrupt proc

Disable the adapter from generating interrupts

mov eax, <Appropriate Status>

ret

DriverDisableInterrupt endp

5 – 26 Version 1.00

Chapter 5 • HSM Procedures

Control Procedures

The ODI specification requires drivers to implement the I/O control
functions (IOCTLs) listed in the table below. The MSM and TSM
development tools perform several of the required IOCTL functions
without assistance from the HSM, as indicated in the table. The
support modules will also "front end" all control functions and preserve
any required registers. The HSM is responsible for implementing the
control functions described in this section.

DriverReset and DriverShutdown are mandatory and must be present
for the driver to function properly. The HSM should also provide the
DriverMulticastChange and DriverPromiscuousChange procedures when
the hardware supports these functions.

The DriverStatisticsChange and DriverRxLookAheadChange procedures
are optional. These procedures allow drivers for intelligent adapters to
update the statistics table or the LookAhead size only as needed. Refer
to the DriverParameterBlock field descriptions in Chapter 3 for
additional information on these two control procedures.

Drivers that support the Hub Management Interface must implement
the DriverManagement procedure to handle management requests and
commands as described in Chapter 8.

Control Function Code Path

0 Get Configuration Table MSM

1 Get Statistics Table MSM -> DriverStatisticsChange

2 Add Multicast Address MSM -> TSM -> DriverMulticastChange

3 Delete Multicast Address MSM -> TSM -> DriverMulticastChange

4 Reserved MSM

5 Shutdown Driver MSM -> TSM -> DriverShutdown

6 Reset Driver MSM -> TSM -> DriverReset

7 Reserved MSM

8 Reserved MSM

9 Set receive LookAhead size MSM -> TSM -> DriverRxLookAheadChange

10 En/Dis Promiscuous Mode MSM -> TSM -> DriverPromiscuousChange

11 En/Dis Receive Monitor MSM -> TSM

12 Reserved MSM

13 Reserved MSM

14 Driver Management MSM -> DriverManagement

Version 1.00 5 – 27

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverReset

DriverReset resets and initializes the adapter hardware. The routine
may also test the hardware to verify that it is functional. If the driver
has been temporarily shutdown, an application may call this routine to
bring the board back into full operation.

When a reset is required, the TSM waits for transmissions in progress
to complete and calls DriverReset.

From within the HSM, DriverReset may be called by DriverInit. It may
also be called by DriverCallBack or DriverISR if the adapter had
problems.

If the MSM calls DriverReset, and it returns successfully, the MSM
resets the MSMTxFreeCount variable to the initial value set by the
driver during initialization. If the MSM calls DriverReset, and the
adapter cannot be reset, the MSM automatically calls DriverShutdown.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the call

On Return EAX Zero if successful; otherwise EAX will return a pointer to a

null-terminated error message.

Interrupts are disabled

Pseudocode

Increment the reset statistics counter

Reset the hardware (includes performing any hardware testing)

Call <TSM>UpdateMulticast

Set EAX to zero if successful

Return

5 – 28 Version 1.00

Chapter 5 • HSM Procedures

DriverShutdown

DriverShutdown must place the hardware into a safe, inactive state.
If the adapter is to be shut down permanently (indicated by the value
in ECX), the MSM disables the adapter’s interrupt immediately after
this routine returns. As far as the HSM is concerned the only
difference between a partial and a complete shutdown is the return of
allocated memory.

Partial Shutdown - When a partial shutdown is required, the MSM sets

MSMStatusFlag, waits for transmissions in progress to complete and
returns the transmit ECBs. The MSM also sets bit 0 of the
SharingFlags in the configuration table. DriverReset should be able to
bring the adapter back into full operation.

Complete Shutdown - A zero value in ECX indicates a complete

shutdown. As with a partial shutdown the MSM has set the flags,
emptied the send queue, and also will return all resources not allocated
directly by the HSM. If the HSM allocated memory using MSMAlloc,
it must be returned using MSMFree before disabling the hardware.

The MSM automatically calls DriverShutdown when the DriverReset
routine fails to reset the hardware. MSMReturnDriverResources and
MSMExitToDOS also call DriverShutdown.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ECX Zero if a permanent shutdown, otherwise a partial shutdown

is required.

Interrupts are disabled but may be enabled during the call

On Return EAX Zero if successful; FFFFFF84h on failure

Interrupts are disabled

Pseudocode

IF a permanent shutdown

return any memory using MSMFree

ENDIF

return any preallocated RCBs or queued TCBs

Disable Hardware

Set EAX = 0

Return

Version 1.00 5 – 29

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverMulticastChange

DriverMulticastChange updates the adapter to reflect the changes in
the TSM’s multicast address table. Novell recommends that all HSMs
support multicast addressing if the hardware allows it. The following
flags and variables must be initialized properly for the adapter’s
multicast mode.

• Bit 3 of the MLIDModeFlags is used to indicate whether or not
multicast addressing is supported.

• Bits 9 and 10 of the MLIDFlags must be set appropriately to
reflect the multicast mechanism or format used by the
adapter/driver.

• The DriverParameterBlock variable, DriverMaxMulticast, must
be set to reflect the maximum number of multicast addresses the
adapter can handle.

The TSM maintains an internal table of multicast addresses. The TSM
modules handle the addition and deletion of addresses in this table.
Whenever the table changes, the TSM calls DriverMulticastChange to
update the adapter’s multicast filtering. The adapter may maintain its
own multicast address table or use a hash table to filter incoming
packets.

Adapter Multicast Filtering

The most common method used by adapters to filter incoming packets
is hashing. When this is the adapter’s method, DriverMulticastChange

must recalculate and update the adapter’s hash table. Hashing does
not guarantee 100% multicast filtering; therefore, the TSM would look
up incoming packets in its multicast address table to ensure that the
packet’s destination address is enabled.

In the case that the adapter keeps its own list of multicast addresses,
this routine should cycle through the entries in the TSM’s multicast
address table and output each entry to the physical card. The TSM
verifies that all addresses it places in its table are valid multicast
addresses so the HSM does not need to validate them.

In either case, the HSM routine must read the TSM’s multicast address
table. Each entry in the table is 8 bytes long. The first 6 bytes are the
address, and the last word is a use flag maintained by the TSM. If the
use flag is non-zero, the entry contains a valid address.

MulticastEntryStruc db 6 dup (?) ; multicast addresses
MulticastInUse dw 0 ; Non-zero if in use

5 – 30 Version 1.00

Chapter 5 • HSM Procedures

The default method (if bits 9 and 10 of the MLIDFlags are zero) for
handling multicast operations is as follows:

Ethernet and FDDI
On entry to this routine, ECX contains the number of valid entries in
the multicast table. All valid entries will be contiguous, so the HSM
does not necessarily need to check the MulticastInUse flag. If ECX is
zero, multicast reception is disabled.

Token-Ring and PCN2
The TSM passes the 32-bit functional address in EDX. In this case
ECX and ESI are normally not used.

Note: If an adapter is capable of supporting both group and functional

addresses (and sets bits 9 and 10 in the MLIDFlags field of the
configuration table accordingly), the DriverMulticastChange routine will
receive both functional addresses and multicast table information .

RX-Net
DriverMulticastChange cannot be supported by RX-Net drivers.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ESI Pointer to the Multicast Table

(default for Ethernet or FDDI)

ECX Number of valid entries in the Multicast Table

(default for Ethernet or FDDI)

EDX 32-bit functional address

(default for Token-Ring or PCN2)

Interrupts are disabled on entry, but may be enabled during the routine

On Return Note EBX and EBP must be preserved

Interrupts must be disabled on return

Pseudocode

Clear the hardware registers that filter incoming packets for multicast addresses

Get current multicast addresses from TSM’s multicast table

Reload hardware register with new multicast address filtering values

Return

Version 1.00 5 – 31

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverPromiscuousChange

Adapters/drivers that can pass all packets to a monitor function in the
protocol stack are said to have a promiscuous reception mode.
DriverPromiscuousChange provides a means for the stack monitor
function to enable or disable promiscuous reception.

Note: Realize that enabling promiscuous mode will have a detrimental impact
on system performance.

A monitoring function examines packets sent from or received by an
adapter. If promiscuous mode is supported, the monitoring function can
request that the adapter enter promiscuous mode. When promiscuous
mode is enabled, the driver should allow all packets (including bad
packets if possible) to be passed up to the monitor function. Only one
monitor function at a time may be registered with a driver.

Be aware that a monitor function may set the configuration table’s
MLIDLookAheadSize to a value other than the 18 byte default. This
will in turn change MSMMaxFrameHeaderSize.

The <TSM>GetRCB and <TSM>ProcessGetRCB require the driver to
indicate the status of the packet in EAX. EAX will always equal zero
for Token-Ring, RX-Net, and FDDI. For Ethernet the status options are
as follows:

• EAX = zero for good packets

• EAX = non-zero for bad packets

EAX bits are set as follows for bad packets:

Bit 0 - CRC Error
Bit 1 - CRC/Alignment Error
Bit 2 - Runt packet (set by the Ethernet TSM)
Bit 8 - Receive too big for ECB (set by the TSM)
Bit 9 - No board number registered (set by the TSM)
Bit 10 - Malformed packet (set by the TSM)
Bit 31 - Driver shutting down (set by the TSM)

If the HSM does not support promiscuous mode, bit 13 of the
MLIDModeFlags in the configuration table must be cleared and the
DriverPromiscuousChangePtr field in the DriverParameterBlock must
be zero.

Special Instructions PCN2

Drivers written with the PCN2L TSM must only use the
<TSM>GetRCB and <TSM>RcvComplete combination. The driver must
pass the status of the received packet to the <TSM>RcvComplete
routine rather than the <TSM>GetRCB. PCN2 status bits are the same
as those described above for Ethernet drivers.

5 – 32 Version 1.00

Chapter 5 • HSM Procedures

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ECX Zero to disable promiscuous mode

Non-zero to enable promiscuous mode

For Token-Ring and FDDI the bits are defined as follows

if ECX is non-zero:

Bit 0 is set if MAC frames are to be received

Bit 1 is set if non-MAC frames are to be received

Both bits are set if all frames are to be received

Interrupts are disabled but may be enabled during the call

On Return Note EBP and EBX must be preserved

Interrupts are disabled

Pseudocode

IF requested to enable promiscuous mode

send enabling command to hardware

ELSE
send disabling command to hardware

Version 1.00 5 – 33

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverStatisticsChange (optional)

The DriverStatisticsChange routine allows the MSM’s control procedure
handler to notify drivers whenever an application requests IOCTL 1
(get driver statistics). This allows HSMs for intelligent adapters that
maintain statistical information on board to update the statistics table
in the Adapter Data Space only as needed (before the MSM passes it up
to the requesting application).

For additional information, refer to the DriverStatisticsChangePtr field
of the DriverParameterBlock in Chapter 3.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the routine

On Return Interrupts are disabled

Note EBP must be preserved

Pseudocode

Transfer statistics maintained by the hardware

to the statistics table in the Adapter Data Space.

5 – 34 Version 1.00

Chapter 5 • HSM Procedures

DriverRxLookAheadChange (optional)

The DriverRxLookAheadChange routine allows the MSM to notify
drivers after an application invokes IOCTL 9 to set the LookAhead size.
This IOCTL changes the MSMMaxFrameHeaderSize variable and
the MLIDLookAheadSize field in the configuration table. Drivers can
use this routine to inform intelligent adapters only when the size
changes rather than constantly checking the value.

For additional information, refer to the DriverRxLookAheadChangePtr

field of the DriverParameterBlock, the MLIDLookAheadSize in the
configuration table, the MSMMaxFrameHeaderSize variable, and the
<TSM>GetRCB procedure.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the routine

On Return Interrupts are disabled

Note EBP must be preserved

Pseudocode

Inform Adapter of new MSMMaxFrameHeaderSize (or new MLIDLookAheadSize)

Version 1.00 5 – 35

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverManagement (optional)

If a driver accepts management commands from outside NLMs (such as
HMI or CSL), the MSM will call the DriverManagement routine to
process the management requests.

Refer to Chapter 8 for a Hub management implementation of this
procedure. See also the DriverManagementPtr field of the Driver-

ParameterBlock in Chapter 3.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ESI Pointer to the management ECB containing the request

(see Chapter 8)

Interrupts are disabled but may be enabled during the routine

On Return Interrupts are disabled

EAX 00000000h = Success; command ECB relinquished

00000001h = Success; command ECB queued

FFFFFF88h = no such handle - ProtocolId not supported

Pseudocode

(refer to Chapter 8 for an example DriverManagement routine)

5 – 36 Version 1.00

Chapter 5 • HSM Procedures

Timeout Detection

The DriverAES and DriverCallBack routines may be used when the
HSM needs to be called at periodic intervals. Typically one of these
routines is used to determine if a board has failed to complete a packet
transmission, but other timed functions may be set up using these
routines as well.

Which routine is used for the HSM’s timeout handling depends on
execution time constraints. While in DriverCallBack, the HSM may
only use operating system routines that can be called at interrupt time.
If any routines are used that must be called during process time only,
then DriverAES should be used.

Note: RX-Net normally uses a specific routine, DriverTxTimeout, to handle
transmit timeouts. This routine is required only when the RX-Net
module is used. RX-Net drivers may also use the other two timing
event routines.

DriverTxTimeout (RX-Net)

The RX-Net TSM calls DriverTxTimeout whenever a transmit has a
software timeout. Under normal conditions, the HSM issues the
Disable Transmitter command to the card. If the hardware does not
require any special attention, the HSM simply returns.

DriverTxTimeout is called at interrupt time and should be optimized to
be as efficient as possible. This procedure must be included when the
HSM uses the RX-Net support module.

Version 1.00 5 – 37

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DriverAES / DriverCallBack

DriverAES is enabled (typically during initialization) by calling
MSMScheduleAESCallBack, and DriverCallBack is enabled by calling
the function MSMScheduleIntTimeCallBack. The use of these two
MSM calls is explained in Chapter 7, but briefly, the MSM routines
expect EAX to contain the desired time interval in ticks (1 tick ≈ 1/18
second).

Once enabled, the MSM invokes the routine automatically at the end
of each interval with EBX pointing to the Frame Data Space and EBP
pointing to the Adapter Data Space. Interrupts are enabled when
DriverAES is called and are disabled on calls to DriverCallBack.

The actual content of the routines is entirely up to the developer. The
pseudocode here illustrates using DriverCallBack to identify a send
timeout error.

On Entry EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are enabled for DriverAES

are disabled for DriverCallBack

On Return Note EBP must be preserved

Pseudocode

IF Transmit is in Progress

IF Elapsed Transmit Time > Maximum Time for Transmit

Increment appropriate error counter

Reset the adapter

Reset [ebp].MSMTxFreeCount

Call <TSM>GetNextSend (check the send queue)

IF TCB was available

Call DriverSend

ENDIF
ENDIF

ENDIF

Return

5 – 38 Version 1.00

Chapter 5 • HSM Procedures

Removal
The NetWare operating system calls the driver’s exit procedure,
DriverRemove, when it receives the command to unload the driver. This
procedure is described below.

DriverRemove

The DriverRemove procedure is called whenever the HSM is unloaded.
The HSM’s linker definition file must include the "exit" keyword
followed by DriverRemove. Because this routine is called by the
operating system, it must preserve the C registers EBP, EBX, ESI and
EDI.

This routine must set EAX to the value of the DriverModuleHandle

from the DriverParameterBlock and call MSMDriverRemove. The MSM
handles MLID deregistration, returns all driver resources, and calls
DriverShutdown before returning.

On Entry Interrupts can be in any state

On Return Interrupts are preserved

Pseudocode

DriverRemove proc

push ebx, ebp, esi, edi

mov eax, DriverModuleHandle

call MSMDriverRemove

pop edi, esi, ebp, ebx

ret

DriverRemove endp

Version 1.00 5 – 39

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

5 – 40 Version 1.00

